



### Effect of Non-Newtonian Slag Behavior on Gap Flow and Friction in CC

#### Shengji Yang



Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign



<sup>t</sup>inuous Casting

onsortium

### Introduction

Observation: Mold shear stress and mold friction are not equal during the oscillation upstroke and downstroke.

Goal: Develop a new model for the slag layer for this phenomena.

Use computational tools (eg CON1D) to interpret these signals

#### Approach:

This project will determine the effect of the non-Newtonian behavior of the slag fluid on the mold stress and friction, in 2 steps:

1: mold movement → slag velocity profile 2: slag velocity profile → mold friction





Introduction – CON1D inuous Casting onso CON1D: a finite-difference model for heat transfer and solidification in the mold region of a continuous caster. Distance from mold hot face 1400 Slag in Osc. mark •••••0.1mm ---- 0.2mm Friction Force (kN) (moving/excessive taper) 0.3mm 1200 Temperature (°C) 0.4mm 20 Friction Force (kN) 2 (attached layer) Attached solid laver 1000 Moving solid layer 0 n Attached layer w/ excessive tape 800

-20

Figure: examples of temperature of the slag, and mold friction from CON1D model<sup>[1]</sup>

CON1D considers the liquid slag as Newtonian fluid with temperature dependency. This project will take into consideration of non-Newtonian behavior of slag fluid

.2

0

Mold Displacement (mm)

2

600

400 L 0

200

400

600

Distance Below Meniscus (mm)

800

1000

-2



### Particular mold velocity definition





inuous Casting Consortiu

### Momentum balance for fluid

Assuming incompressible flow with constant density and no velocity across slab width:

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_z}{\partial z} = 0$$

The momentum balance on z-direction (vertically):

$$\rho \cdot \left(\frac{\partial V_z}{\partial t} + V_x \cdot \frac{\partial V_z}{\partial x} + V_y \cdot \frac{\partial V_z}{\partial y} + V_z \cdot \frac{\partial V_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + \rho g_z$$

With  $\frac{\partial P}{\partial z} = \rho_{steel} g_z$ , this simplifies to:

$$\rho \bullet \frac{\partial V_z}{\partial t} = \frac{\partial \tau_{xz}}{\partial x} + (\rho - \rho_{steel})g_z$$

6

# Casting Consortiu

### Non-Newtonian slag fluid data

Recent work shows viscosity as a function of shear rate for slags:



- Slag fluid: shear thinning behavior
- $\tau = m \cdot (\dot{\gamma})^n$  with 0<n<1

$$\mu_{eff} = m \cdot (\dot{\gamma})^{n-1}$$
 with 0

From the fitting of the figure:

 $\log(\mu_{eff})$  $= \log(m) + (n-1)\log(\dot{\gamma})$ 

Example with Basicity=0.94 (=CaO/SiO<sub>2</sub>):

Shengji Yang

7

n=0.874, m=0.616

 $\tau = 0.616 \cdot (\dot{\gamma})^{0.874}$ 

S. Shina, J. Chob, S. Kim, J. Am. Ceram. Soc., pp 3263-3269 (2014) University of Illinois at Urbana-Champaign Metals Processing Simulation Lab



### Newtonian Viscosity for fluid

The viscosity – temperature relationship fits into:

$$\mu = \mu_0 \left( \frac{T_0 - T_{fsol}}{T - T_{fsol}} \right)$$

Newtonian fluid viscosity changes with respect to temperature within the slag layer:



8

value

0.43 Pa\*s

1300 °C

950 °C

1.6

## Shear thinning slag fluid expression

For shear thinning fluid, shear stress with respect to temperature and shear rate is then :

$$\begin{aligned} \tau &= m \cdot |\dot{\gamma}|^{n-1} \left(\frac{T_0 - T_{fsol}}{T - T_{fsol}}\right)^a (\dot{\gamma}), \quad \text{viscosity } \mu_{eff} = m \cdot |\dot{\gamma}|^{n-1} \left(\frac{T_0 - T_{fsol}}{T - T_{fsol}}\right)^a \\ \text{Assume T is linear across the fluid layer: } T &= \frac{x}{d_l} \left(T_0 - T_{fsol}\right) + T_{fsol} \\ \hline \tau_{xz} &= m \cdot |\dot{\gamma}|^{n-1} \left(\frac{d_l}{x}\right)^a (\dot{\gamma}) \\ \text{Viscosity:} \qquad \mu_{eff} = m \cdot |\dot{\gamma}|^{n-1} \left(\frac{d_l}{x}\right)^a \\ \hline \frac{n}{d_l} \frac{fluid parameter}{log arameter} \frac{0.616}{0.874} \frac{1}{b_c} \frac{\dot{\gamma}}{cast velocity} \frac{dV_z/dx}{1.488 \text{ m/min}} \\ \hline \frac{\eta}{V_c} \frac{shear rate}{cast velocity} \frac{dV_z/dx}{1.488 \text{ m/min}} \\ \hline \end{array}$$



### Effective viscosity for slag fluid

Viscosity changes with respect to temperature and shear rate within the slag layer is shown in the figure. Assume T is linear across fluid layer, different color lines represent different shear rate.





### **Velocity Solution**

#### Substitute the shear stress into the momentum equation:

$$\rho\left(\frac{\partial V_z}{\partial t}\right) = \frac{\partial}{\partial x} \left[ m \left(\frac{\partial V_z}{\partial x}\right)^{n-1} \left(\frac{d_l}{x}\right)^a (\dot{\gamma}) \right] + (\rho - \rho_{steel})g \quad \text{with BC:} \begin{cases} V_z |_{x=0} = \varphi \omega \sin(\omega t) \\ V_z |_{x=dl} = V_c \end{cases}$$

Solution is:

$$Vz = \frac{nx}{a+n} \cdot \left(\frac{(\rho_{steel} - \rho)gx}{C_1} + 1\right)^{-\frac{1}{n}} \cdot 2F1\left(-\frac{1}{n}, \frac{a+n}{n}; \frac{a}{n} + 2; \frac{g(\rho_{steel} - \rho)x}{C_1}\right) \cdot \left(\frac{x^a(C_1 + (\rho_{steel} - \rho)gx)}{m(dl)^a}\right)^{\frac{1}{n}} + C_2$$

Validation:

The existing model<sup>[1]</sup> treat the fluid as Newtonian fluid, which means n=1 in the power fluid model. When n=1:

 $Vz = \frac{g(\rho_{steel} - \rho)x^{a+2}}{m(a+2)(dl)^{a}} + \left(\frac{(V_{c} - V_{s})}{dl} - \frac{g(\rho_{steel} - \rho)dl}{m(a+2)}\right) \cdot \left(\frac{x^{a+1}}{dl^{a}}\right) + V_{s}$ 

And this is an exact match with the Newtonian fluid solution from the existing model.

[1]: Y. Meng and B.G. Thomas, METALLURGICAL AND MATERIALS TRANSACTIONS B, 2003

University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Shengji Yang · 11



### **Test problem casting conditions**

The following additional properties are used to evaluate the solution<sup>[1][2]</sup>:

| symbol         | description   | value                         |  | symbol  | description         | value        |
|----------------|---------------|-------------------------------|--|---------|---------------------|--------------|
| $\rho_{steel}$ | steel density | 7400 kg/m <sup>3</sup>        |  | Ϋ́      | shear rate          | $dV_z/dx$    |
| $ ho_{slag}$   | slag density  | 2600 kg/m <sup>3</sup>        |  | dl      | liquid thickness    | 0.2 & 0.6 mm |
| $s(=2\varphi)$ | stroke        | 6.0 mm                        |  | а       | exponent            | 1.6          |
| ω              | frequency     | 2.9 Hz                        |  | $\mu_0$ | ref. viscosity      | 0.43 Pa*s    |
| m              | fluid         | 0.616                         |  | $T_0$   | ref. temperature    | 1300 °C      |
|                | parameter     |                               |  | Terry   | mold solidification | 950 °C       |
| n              | fluid         | 0.874                         |  | - j sol | temperature         |              |
|                | parameter     |                               |  | W       | slab width          | 1500 mm      |
| $V_{S}$        | mold velocity | $\varphi\omega sin(\omega t)$ |  | N       | slab thickness      | 230 mm       |
| Vc             | cast velocitv | 1.488 m/min                   |  |         |                     | 200 1111     |

[1]: Y. Meng and B.G. Thomas, *METALLURGICAL AND MATERIALS TRANSACTIONS B*, 2003 [2]: H.Shin, S.Kim, B.G. Thomas, G. Lee, J.Park, J. Sengupta, *ISIJ International*, 2006



nuous asting Consortium

### **Velocity Solution profile**

#### Velocity profile:



### Shear rate range in interfacial gap

Shear rate  $(dV_z/dx)$  from velocity solution:



Case a, 0.2mm film thickness

Case b, 0.6mm film thickness

### **Effective Viscosity result**

#### A viscosity plot using the power law fluid velocity solution:

asting Consor





### Mold friction vs. position result (with liquid only)

The following friction vs. mold displacement figures predict the mold friction (due to the liquid shear stress) at a certain mold position.

huous





### **Conclusions & Future work**

- CON1D model of heat transfer in the shell and mold, liquid slag flow, solid slag stress are used and being improved with addition of non-Newtonian fluid behavior.
- Non-Newtonian (shear-thinning) behavior of molten slag has little effect on velocity, or uneven mold friction during up/down stroke. However it does affect shear stress and liquid friction, especially when liquid layer is thin.

#### Future Work:

University of Illinois at Urbana-Champaign

- Consider friction from solid slag layer.
  - Current work includes friction from liquid
  - Friction from solid slag layer is more important
- Examine non-Newtonian behavior of more slags



### Acknowledgments

Metals Processing Simulation Lab

 Continuous Casting Consortium Members (ABB, AK Steel, ArcelorMittal, Baosteel, JFE Steel Corp., Magnesita Refractories, Nippon Steel and Sumitomo Metal Corp., Nucor Steel, Postech/ Posco, SSAB, ANSYS/ Fluent)

19

Shengji Yang